Categories: Machinery Diagnostics,Condition Monitoring,Machinery Maintenance,Other Topics

Calculating Output Speed Using Pulley Diameters and Input Speed

| | | |

By on May 10, 2017

Knowing the correct shaft speed of both shafts on a belt-driven machine is important when performing machinery diagnostics. Ideally you would do this by first identifying the input and output speeds using a strobe light, photo tach or laser tach. Once you know the accurate speed of both components, use this formula to determine the multiplication factor:

RPM Output/RPM Input = Multiplication Factor 

On a belt-driven fan the two primary speeds required are the RPM of the Motor and the RPM of the fan. For example, if you know the motor speed is 1778 rpm and the fan speed is 944 rpm the multiplication factor would be:

944/1778 = .5309

The multiplication factor is input into the Nest when building a machine.

If you can’t get to the fan shaft to strobe it but you do know the pulley diameters here is how you can determine the output speed and the multiplication factor.


 RPM Input/RPM Output = Diameter Out/Diameter In

Fan sheave diameter = 11.5 inches                     Motor sheave diameter = 6.5 inches

Output RPM = ?                                                      Input RPM = 1773


RPM Input/RPM Output = Diameter out/Diameter In

1773/RPM Output = 11.5/6.5

(RPM Output) (11.5) = (1773)(6.5)

(RPM Output) (11.5) = 11,524.5

RPM Out = 1,002.13

This number does make sense since the fan will be running slower since it has the bigger pulley.

Multiplication Factor = RPM Out/RPM In = 1002.13/1773 = .5652

Input .5652 as the multiplication factor in the Nest.

Here are some video’s that discuss the importance of 1X and how to enter a multiplication factor into the Nest when analyzing belt driven machinery.

The importance of finding 1X:

Entering Multiplication Factors into the Nest:


About the Author

Mike Keohane has been involved in machinery reliability since 1985. He started as a field service engineer for IRD Mechanalysis. Prior to that he was a wireline logger for Schlumberger Well Services. He joined VibrAlign in 1992 and supports clients in Georgia, South Carolina, Alabama and the Florida Panhandle. In addition to precision alignment, he has field experience in vibration analysis, field and shop balancing, oil analysis and ultrasonics. Mike holds a BSME from Michigan State University. Mike and his wife and two children currently live in Peachtree City, GA.

2 responses to “Calculating Output Speed Using Pulley Diameters and Input Speed”

  1. Lakshan Weerasiri says:

    I would like to know how that above mentioning formula is derived

  2. Michael Keohane says:


    These formulas are in a variety of engineering texts/reference guides. My typical source is the “Marks Standard Handbook for Mechanical Engineers.”

Leave a Reply

Your email address will not be published. Required fields are marked *